$${f K_L}
ightarrow \pi^+\pi^-\pi^0 e^+e^-$$
 and ${f K_L}
ightarrow \pi^0\pi^0\pi^0 e^+e^-$ A. Ledovskoy September 28, 2002

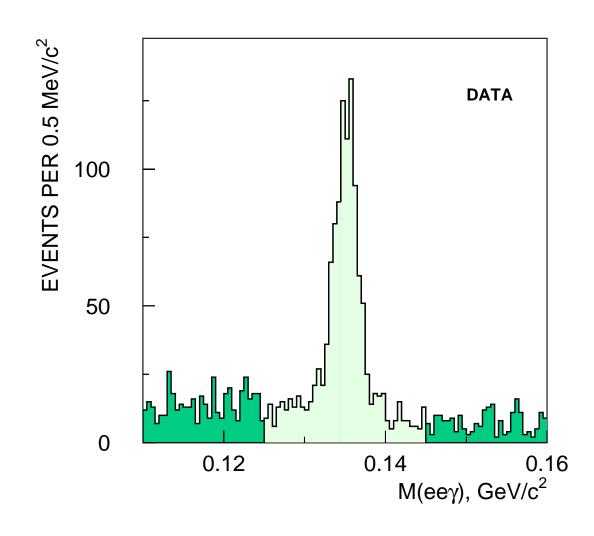
Overview

- What is $\pi\pi\pi ee$? Introduction.
 - Theory
 - Existing experimental results
 - Motivation for $\pi\pi\pi ee$ search
- Search for $K_L \to \pi^+\pi^-\pi^0 e^+e^-$
 - Simple analysis of 0.6% of KTeV data.
 - First observation of the decay
 - Prospects for serious analysis of entire KTeV data
- Search for $K_L \to \pi^0 \pi^0 \pi^0 e^+ e^-$
 - Simple analysis of \sim 25% KTeV data.
 - Identifying main backgrounds
 - Prospects for serious analysis of entire KTeV data.

- No published experimental results or predictions about $\pi\pi\pi ee$ decays.
- No published experimental results about $\pi\pi\pi\gamma$ decays
- $K_L \to \pi^+ \pi^- \pi^0 \gamma$ KTeV result (not published), '97 E832 data.
 - \sim 2900 events
 - Measured BR= $(1.70\pm0.06)\times10^{-4}$
 - Good agreement with theoretical predictions
- ChPT predictions for $K_L \rightarrow \pi^+\pi^-\pi^0 e^+e^-$ BR=(1.65±0.03)×10⁻⁴, hep-ph/9612412
- $K_L \to \pi^+ \pi^- \pi^0 \gamma$ proceed via internal Brem (100%)
- May expect BR($K_L \to \pi^+ \pi^- \pi^0 e^+ e^-$)~10⁻⁶
 - easy measurement for KTeV
 - never been observed before

- Very small in $\pi^+\pi^-\pi^0\gamma$
 - BR(DE)= $(8a_1+a_2-10a_3)^2 \times 2 \times 10^{-10}$, Nucl.Phys.B413, 321 $3a_2-6a_3-2=-4.5\pm0.5$
 - BR(DE)> 1.6×10^{-10} My estimations from numbers in hep-ph/9612412
- Additional amplitudes in $\pi\pi\pi\gamma^*$ may increase BR
- These contributions, $O(p^4)$ and $O(p^6)$, is not easy to calculate in ChPT. Experimental results needed to test ChPT at this level.
- Compare $\pi^+\pi^-\pi^0\gamma$ and $\pi^+\pi^-\pi^0\gamma^*$ but Brem is too strong.
- Search for $\pi^0\pi^0\pi^0\gamma$ and $\pi^0\pi^0\pi^0\gamma^*$. No Brem there.

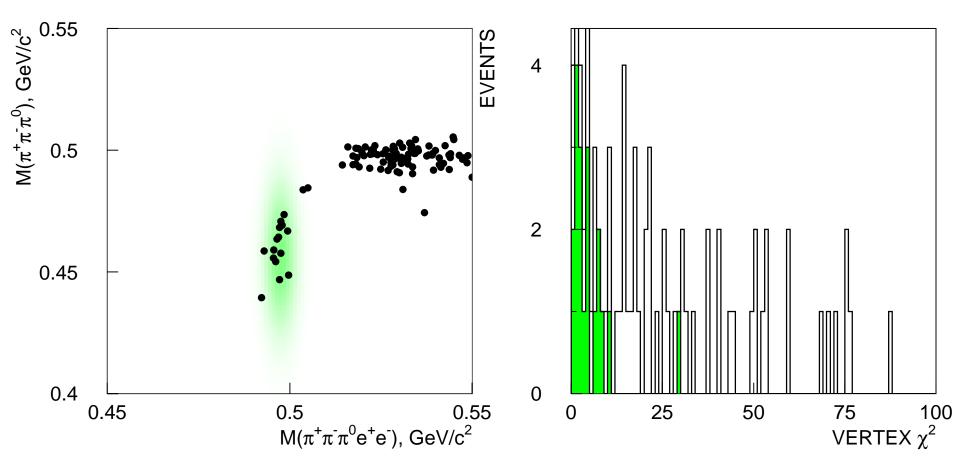
No theoretical papers (= I could not find any). These are my speculations based on comparison with $\pi^0\pi^0e^+e^-$


- $\pi^0\pi^0e^+e^-$ is expected to have BR=2×10⁻¹⁰
 - 1/3 of the rate due to DE(E2)
 - ullet 2/3 of the rate due to "charged radius" $K_L o \gamma^* K_S (K_S o \pi^0 \pi^0)$
- DE in $\pi^0\pi^0\gamma$ suppressed to E2 but may be boosted to E1 (or M1?) in $\pi^0\pi^0\pi^0\gamma$
- "Charged radius" amplitude is suppressed by CP violation: $K_L \to \gamma^* K_S(K_S \to \pi^0 \pi^0 \pi^0)$ but other similar amplitudes may be present.
- Overall, the rate for $\pi^0\pi^0\pi^0\gamma^*$ most likely is very small.

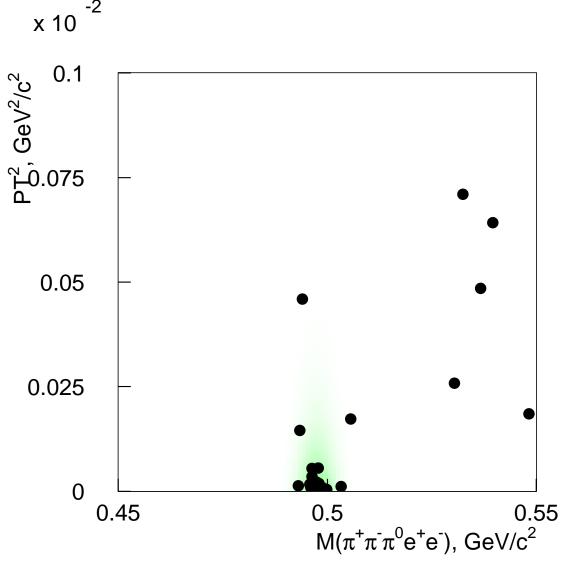
Enough speculations, lets look at the data...

General Remarks:

- \sim 180 tapes of 4TRK raw tapes from '97 and '99 runs need to be recrunched.
- 0.6% data analized according to normalization mode (details later)
- 20/20 analysis (not "blind" analysis)
 - Only small fraction of data is analized.
 - All cuts are based on previous knowelage about KTeV data.
 - If there is a bias, it will be detected on next chunk of data.


- 4TRK trigger
- 4 tracks, no Y sharing
- IPACK(1)=16399,IPACK(2)=2652
- 4-track vertex
- Track-Cluster match = 2
- π^{\pm} : E/p<0.9
- e^{\pm} : 0.9<E/p<1.1
- \bullet γ :
- HW cluster
- E>2 GeV
- FUSE3X3CS<5.0
- FUSECHI2CS<8.0
- $M(\pi\pi ee) < 0.4 \text{ GeV/c}^2$
- $M(\gamma\gamma)=M_{\pi^0}\pm 5~\text{MeV/c}^2$

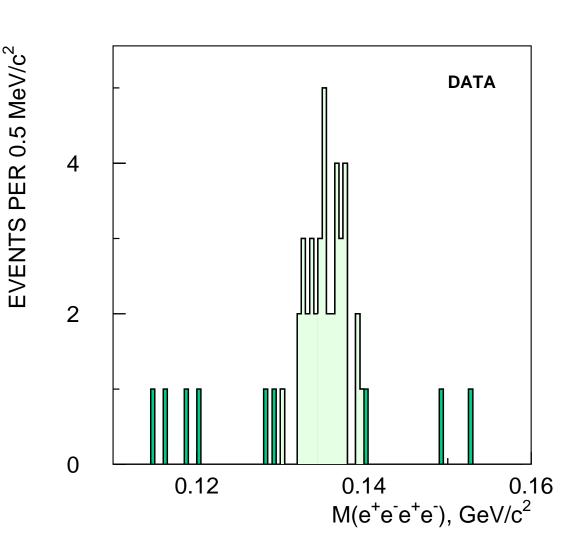
Background Cuts:


$$M(ee\gamma)$$
 <> $M_{\pi^0} \pm 10 \text{ MeV/c}^2$
 $M(ee\gamma\gamma)$ <> $M_{\pi^0} \pm 15 \text{ MeV/c}^2$

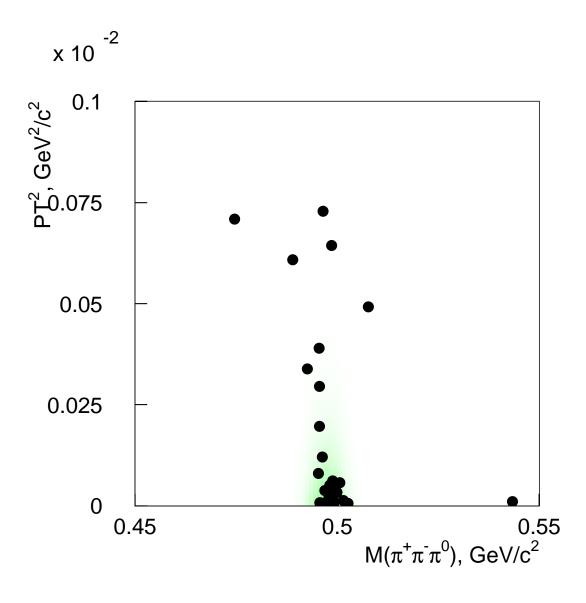
Event Selection [7]

Remaining background:

- probably $K_L o \pi^+\pi^-\pi^0 \; (\pi^0 o \gamma\gamma)$
- away from signal region (shaded)
- poor vertex quality



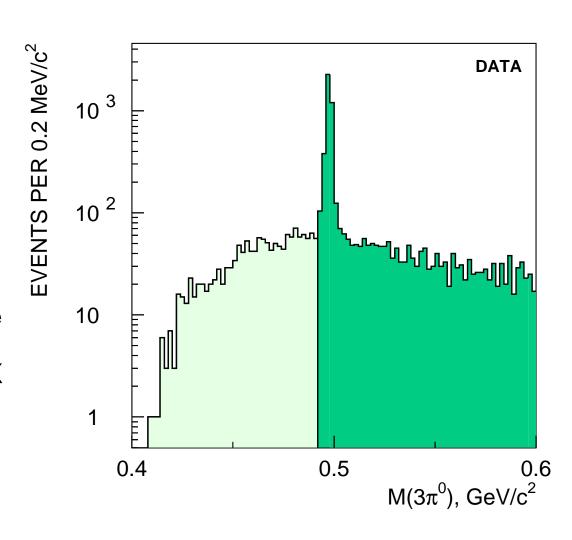
One more cut:


 $M(\pi^+\pi^-\pi^0) < 0.490 \text{ GeV/c}^2$

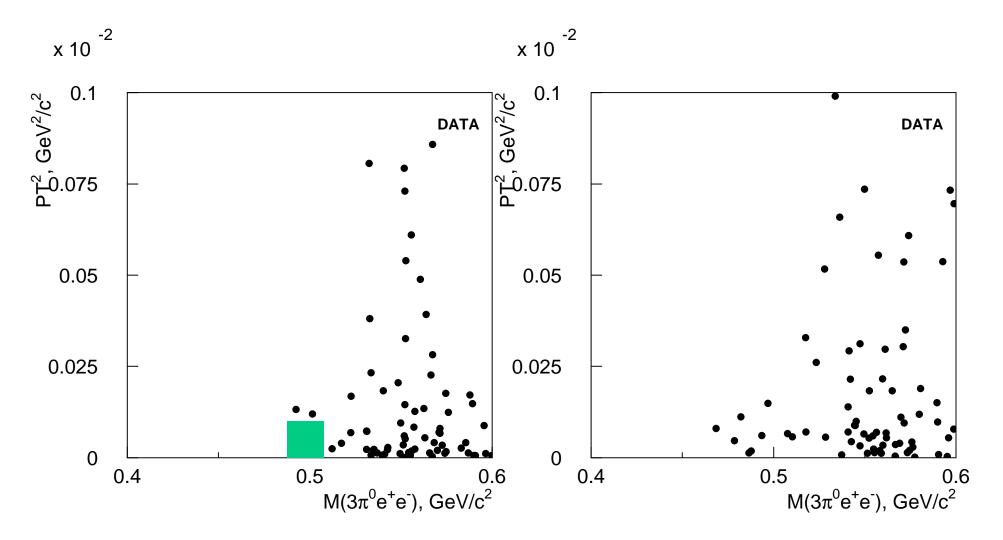
Observed 17 candidates

- Same trigger
- Same 4-track vertexing
- NTRK = 6
- Same number of π
- ullet Same number of $e\!/\gamma$
- $M_{ee} > 5 \text{ MeV/c}^2$
- M_{eeee} = M_{π^0} \pm 5 MeV/c²

Normalization mode [10]

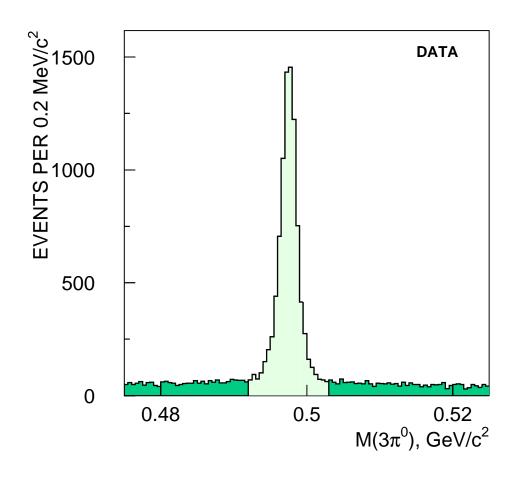

- Acceptance = 0.16%
- BR = 4×10^{-6}
- Obserevd 23 events
- Flux analized: 3.6×10^9
- Fraction of data: 0.6%

- 17 candidates from 0.6% of available data.
 First observation.
 Clean signal.
- Possible background from $K_L \to \pi^+ \pi^- \pi^0 \gamma$
- Expect 2000–3000 from entire data sample.
- Maybe enough to compare E_{γ} with $K_L \to \pi^+\pi^-\pi^0\gamma$
- Different normalization mode?
- Need to write Monte Carlo for this decay.
- Need to process \sim 180 tapes of raw 4TRK data.
- Will be good addition to $K_L \to \pi^+\pi^-\pi^0\gamma$ KTeV result


General Remarks:

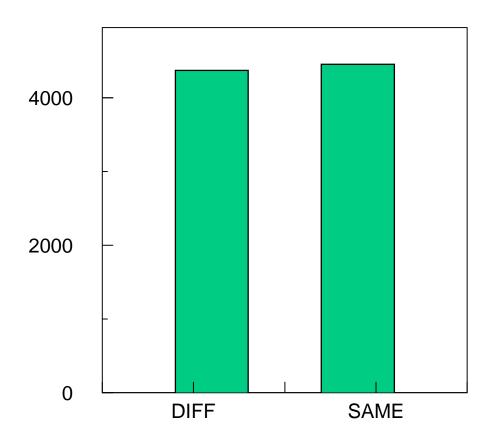
- 2ENCLUS trigger.
- Crunch output with 2T8CL tag (2 track, NCLUS≥8)
- The entire KTeV data = 4 DLT tapes, NQN601-NQN604
- Main background is expected from *multiple* K_L decays in vacuum region.
 - Background rate is a function of beam flux and beam intensity.
 - Need find a way to normalize MC simulations of the backgrounds
 - How to simulate double decays in KTEVMC ?
- "Blind" analysis probably is a way to go.
- Background rejection is not as easy as in $K_L \to \pi^+\pi^-\pi^0 e^+e^-$

- NTRK=2, no Y sharing
- IPACK(1)=16399,IPACK(2)=2652
- Vertex, matching=3
- e^{\pm} : 0.9<E/p<1.0
- \bullet γ :
- FUSECHI2CS<20.0
- SEED block is not edge
- Find $3\pi^0$ vertex Z pos. X and Y of charged vertex
- M(3 π^0)<0.492 GeV/c²
- (5<M(ee)<100) MeV/c²



Event Selection [14]

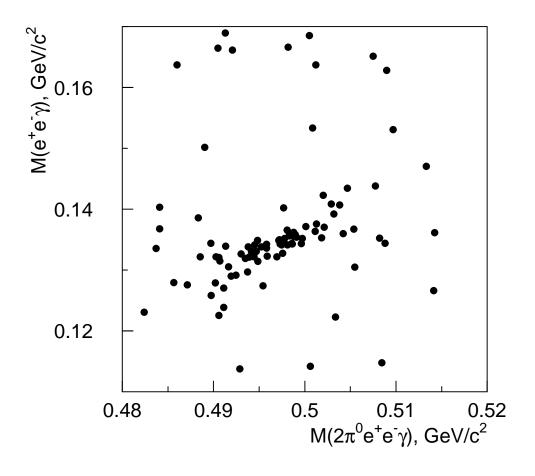
Good $3\pi^0 e^+ e^-$ Vertex


Bad $3\pi^0 e^+ e^-$ Vertex

Reconstructed $K_L \rightarrow 3\pi^0$ (6 γ)

- \sim 8800 events
- Mean = $497.52 \pm 0.02 \text{ MeV/c}^2$
- $\sigma = 1.18 \pm 0.02 \text{ MeV/c}^2$

Sources of Background [16]



Charged and Neutral

- Same beam
- Opposite beam

Evidence of 2 independent decays

Sources of Background [17]

Events with 2 completely reconstructed decays

•
$$K_L \to 3\pi^0 (6\gamma)$$

•
$$K_L \rightarrow 3\pi_D^0$$

The way to normalize MC simulation of double decays for background studies

- 1 Tape (out of 4) is processed
- Most likely all backgrounds come from double decays
 - Can be simulated with MC
 - Can be studied with data
- Expect 0—few events
- Need to choose normalization mode?
- Need to write Monte Carlo for this decay.

Is there enough interest to have

$$K_L \rightarrow \pi^+ \pi^- \pi^0 e^+ e^-$$

and

$$K_L \rightarrow \pi^0 \pi^0 \pi^0 e^+ e^-$$
 analyses finished?